
AI-Powered Coding Assistants in 2025:
A Comparative Analysis of GitHub
Copilot, Windsurf, and Cursor
1. Introduction
The landscape of software development has been irrevocably altered by the advent of
AI-powered coding assistants. These tools, leveraging sophisticated large language models
(LLMs), promise to augment developer productivity, streamline workflows, and even
democratize coding to some extent. As of June 2025, the market is maturing, with several key
players offering increasingly advanced features. This report provides a comprehensive
comparison of three prominent AI coding assistants: GitHub Copilot, Windsurf (formerly
Codeium), and Cursor. The analysis focuses on their latest features, pricing structures, user
sentiment, capabilities within Jupyter Notebook environments, and a speculative look at which
tool might best align with the capabilities of an advanced AI like Google's Gemini. The objective
is to furnish developers, technical leads, and organizations with a detailed understanding to
inform their choice of AI coding partner.

2. Methodology
This report synthesizes information from official product documentation, changelogs, pricing
pages, user reviews, community discussions, and technical articles, all referencing features and
statuses as of June 11, 2025, or the latest available information leading up to this date. The
analysis compares the tools across several key dimensions: core features, agentic capabilities,
codebase understanding, pricing models, user feedback, and specific integrations like Jupyter
Notebook support. A qualitative assessment of which tool a hypothetical human version of
Google's Gemini might prefer is also included, based on Gemini's known architectural strengths
and capabilities.

3. Overall Feature Comparison (as of June 11, 2025)
As AI coding assistants evolve, their feature sets are becoming increasingly sophisticated,
moving far beyond simple code completion. GitHub Copilot, Windsurf, and Cursor each offer a
distinct suite of capabilities aimed at enhancing developer productivity.

3.1. Core Coding Assistance (Autocomplete, Inline Suggestions, Chat)

● GitHub Copilot: Offers real-time code suggestions and completions using a base model,
with unlimited completions for paid tiers. It features robust chat capabilities within the IDE,
GitHub platform, and mobile applications. Copilot Chat allows users to explain code, ask
programming questions, and generate code snippets using natural language prompts,
supported by / commands and @ participants for context (e.g., #file, #codebase,

#selection). It supports different operational modes: "ask" for queries, "edit" for guided
modifications, and "agent" for more autonomous tasks.

● Windsurf: The Windsurf Editor, a fork of VS Code, features "Windsurf Tab," which tracks
command history, clipboard, and agent actions to provide smarter, more relevant
suggestions. Its standard autocomplete suggests code as you type, while
"Supercomplete" analyzes code context before and after the cursor to predict next moves,
showing suggestions in a diff box. The Cascade agent offers "Write" and "Chat" modes.
Cascade can parse web pages, utilize a local index of the entire codebase, leverage
"Memories" for context persistence, and follow user-defined "AI Rules". An integrated
terminal allows for AI-assisted command generation and execution.

● Cursor: Built as an AI-first code editor (also a VS Code fork), Cursor provides highly
predictive tab completion that anticipates the user's next edit across multiple lines. Its chat
functionality is deeply integrated, possessing awareness of the entire codebase, allowing
it to answer questions, refer to specific files or documentation, and edit code based on
natural language instructions. A notable feature from its June 4, 2025, update is the ability
to render visualizations like Mermaid diagrams and Markdown tables directly within the
chat interface. Cursor also supports chat tabs, enabling users to manage multiple AI
conversations in parallel.

3.2. Agentic Capabilities (Multi-file edits, Task Automation,
Debugging)

● GitHub Copilot: The "Agent mode" in Copilot is designed for end-to-end task completion.
It can search the workspace for relevant context, edit multiple files, check for errors, and
run terminal commands (with user permission). "Copilot Edits" is another feature for
applying changes across multiple files, although some user accounts suggest it can be
slow or prone to errors.

● Windsurf: The "Cascade" agent is marketed as an AI that "codes, fixes and thinks 10
steps ahead". A significant recent addition is "Planning Mode" (Wave 10, June 10, 2025),
which helps manage complex, long-running tasks by generating an editable plan.md file.
This file outlines the AI's intended actions, allowing for human-AI collaboration on the
task's structure. Cascade can also automatically detect and fix lint errors it generates.

● Cursor: Cursor features a "Background Agent" for handling remote coding tasks and an
"Agent in Jupyter Notebooks". A key innovation is "BugBot," introduced in its 1.0 release
(June 4, 2025), which automatically reviews pull requests on GitHub, identifies potential
bugs and issues, and allows users to click "Fix in Cursor" to address them with a pre-filled
prompt. The agent can also edit entire classes or functions based on a simple natural
language prompt. Users have reported leveraging Cursor for AI-assisted debugging and
automated commit message generation.

3.3. Codebase Understanding & Context Management

● GitHub Copilot: Employs semantic indexing to better understand repository context.
Agent mode actively searches the workspace to gather relevant context for its operations.
Users can explicitly attach files, symbols, and selections to chat prompts to refine
Copilot's understanding.

● Windsurf: Touts an industry-leading context awareness engine for deep codebase

understanding. Its "Memories" feature allows the Cascade agent to persist context across
sessions and conversations. "Rules" can be defined by users to guide the AI's behavior,
such as adhering to specific framework patterns. A local indexing engine provides context
from the entire codebase, not just recently accessed files.

● Cursor: Is designed to "know your codebase," enabling it to answer questions based on
the project's content and refer to specific files or documentation. The "Memories" feature,
introduced in beta with Cursor 1.0, allows the AI to recall facts from previous
conversations and apply them in future interactions within the same project. Users can
define global ignore patterns and opt to include the project's directory structure in the
context provided to the AI. Furthermore, .cursorrules files can be used to specify coding
preferences and standards for the AI to follow.

3.4. Refactoring & Code Modernization

● GitHub Copilot: Includes features specifically aimed at refactoring existing code,
migrating projects (e.g., to different languages or frameworks), and modernizing legacy
codebases.

● Windsurf: The Cascade agent is built to handle complex codebases, which is essential
for effective refactoring and modernization efforts.

● Cursor: Allows developers to update entire classes or functions using simple natural
language prompts, facilitating large-scale refactoring. Some reviews highlight its capability
for advanced refactoring, including rewriting entire codebases.

3.5. Testing Assistance

● GitHub Copilot: Provides a "write tests" feature. Specific chat commands like /tests (to
generate tests) and /fixTestFailure (to suggest fixes for failing tests) are available.

● Windsurf: The Cascade agent is described as capable of fixing test failures "before you
even write the test," suggesting a proactive approach to ensuring code quality.

● Cursor: Its agent mode can be instructed to add tests to the codebase as part of its task
execution.

3.6. Extensibility & Customization

● GitHub Copilot: Offers several layers of customization, including personal and
repository-level custom instructions. A significant development is the GitHub Copilot
Extensions framework, allowing developers to build and share custom tools, agents, and
skillsets that integrate with Copilot. Furthermore, Copilot Studio enables the creation and
deployment of custom engine agents that can be published to Microsoft Copilot Chat,
extending its capabilities with domain-specific intelligence.

● Windsurf: Supports the Model Context Protocol (MCP), enabling integration with custom
tools and services. Users can access curated MCP servers for one-click setup with
services like Figma, Slack, and PostgreSQL. Windsurf also allows users to create
"Custom Workflows" (saved prompts callable via slash commands) and "File-Based
Rules" (granular, always-on rules or rules attached to file globs) to tailor Cascade's
behavior.

● Cursor: Allows users to import their existing VS Code extensions, themes, and
keybindings, ensuring a familiar environment. It supports MCP with one-click install and

OAuth for server authentication. A beta feature for "Custom modes" allows users to
compose new operational modes with specific tools and prompts. Project-specific
configurations can be managed using .cursorrules files.

3.7. Unique/Standout Features

● GitHub Copilot:
○ Copilot Spaces: A collaborative feature for teams to organize and share context,

and work together with AI.
○ Copilot Vision: Allows users to attach images (e.g., screenshots, UI mockups) to

chat prompts for multimodal interaction, enabling tasks like debugging from a
screenshot or generating code from a design.

○ Deep GitHub Integration: Beyond chat, this includes features like generating PR
summaries and interacting with repository data.

● Windsurf:
○ Planning Mode: A collaborative planning primitive where the AI generates and

updates a plan.md file for complex tasks, allowing human oversight and
modification.

○ SWE-1 Models: Windsurf's own family of "Frontier Models" designed for advanced
coding tasks.

○ Deploys: Integrated functionality to deploy applications to Netlify with a single
prompt (beta feature).

○ Windsurf Reviews: A feature for teams (Teams and Enterprise SaaS plans) that
uses a GitHub app for AI-assisted code review and PR description editing.

● Cursor:
○ BugBot: An automated AI agent that reviews GitHub pull requests for bugs and

issues, providing comments and direct links to fix them in the Cursor editor.
○ Max Mode: Allows users to access more powerful (and potentially more expensive)

AI models on a token-based pricing system, offering higher performance for
complex tasks.

○ Extensive Model Choice: Cursor provides access to a wide array of frontier
models from various providers, including different versions of GPT, Claude, Gemini,
and Grok.

○ Chat Tabs: Facilitates managing multiple concurrent AI conversations within the
editor.

3.8. IDE Support (Beyond Native Environments)

● GitHub Copilot: Widely available as an extension for popular IDEs including Visual
Studio Code, Visual Studio, Vim/Neovim, and the JetBrains suite (e.g., IntelliJ IDEA,
PyCharm).

● Windsurf: Offers its own "Windsurf Editor" (a VS Code fork). The Cascade agent is also
natively integrated into JetBrains IDEs. A Chrome extension provides Windsurf's AI code
autocompletion in over 70 IDEs and web editors, including Colab and Jupyter Notebooks.

● Cursor: Is primarily its own AI-first code editor, which is a fork of VS Code. While it
leverages the VS Code extension ecosystem, its core AI features are deeply embedded
within this custom editor environment.

The choice between these tools often comes down to a trade-off between the breadth of

features and the depth of integration within a preferred development environment. Users deeply
embedded in the GitHub ecosystem might find Copilot a natural extension, while those seeking
an AI-first editor experience might lean towards Cursor or Windsurf. The rapid development in
this space means that feature parity in one area can quickly be offset by innovation in another,
making continuous evaluation essential.
A notable trend is the increasing focus on "agentic" capabilities. All three tools are heavily
investing in features that allow the AI to perform more complex, multi-step tasks with greater
autonomy. However, the definition and implementation of these "agents" vary. Copilot's Agent
Mode is an evolution of its chat functionality, Windsurf's Cascade is a core component of its IDE
designed for proactive assistance, and Cursor offers both a general Background Agent and
specialized agents like BugBot. This "agent" terminology is becoming central to marketing, but
users must look closely at the specific functionalities, reliability, and control mechanisms offered.
The true power of these agents often lies in their ability to understand and utilize the broader
codebase context, a challenge that all three are tackling with features like semantic indexing
(Copilot), comprehensive local indexing and "Memories" (Windsurf), and deep codebase
awareness with configurable rules (Cursor).
Furthermore, extensibility is emerging as a critical factor for long-term viability. The capacity to
customize the AI's behavior through instructions, rules, or custom modes, and to extend its
capabilities by integrating with other developer tools (often via protocols like MCP), is vital. This
allows the AI assistants to move beyond generic, one-size-fits-all solutions and adapt to the
specific needs of diverse projects, programming languages, and team workflows. As AI models
become more powerful, the frameworks that allow developers to harness and direct that power
effectively will become key differentiators.

Table 1: Overall Feature Comparison Matrix (June 2025)

Feature Category GitHub Copilot Windsurf Cursor
Basic Autocomplete Good, unlimited in paid

tiers
"Windsurf Tab" &
"Supercomplete" for
contextual suggestions

Excellent, predictive
multi-line tab
completion

Advanced Inline Edits "Copilot Edits" for
multi-file changes

Cascade agent for
code generation &
modification

Edit entire
classes/functions via
prompt; AI-driven
refactoring

Chat Capabilities IDE, GitHub, Mobile;
explains code, answers
questions, uses /
commands & context
variables

Cascade "Chat" mode;
can parse web pages,
use local index,
Memories, Rules

Deep codebase
awareness, file/doc
referencing, natural
language editing;
supports visualizations
& chat tabs

Agent Mode
Sophistication

"Agent mode" for
end-to-end tasks,
workspace search, file
edits, error checks,
terminal commands

"Cascade" agent;
"Planning Mode" for
complex tasks with
editable plan.md

"Background Agent";
specialized "BugBot"
for PR reviews; Agent
in Jupyter Notebooks

Multi-File Operations Via Copilot Edits and
Agent Mode

Cascade designed for
complex codebase

Strong multi-file
refactoring and editing

Feature Category GitHub Copilot Windsurf Cursor
interaction; Planning
Mode facilitates
multi-step, multi-file
tasks

capabilities; Agent can
modify multiple files

Codebase-wide
Context

Semantic indexing;
Agent mode searches
workspace; explicit
context attachment
(#file, etc.)

Context awareness
engine; "Memories" for
persistence; local
indexing of entire
codebase; "Rules" for
guidance

"Knows your
codebase"; "Memories"
(beta); global ignores;
project structure in
context; .cursorrules

Refactoring Support Dedicated features for
refactoring and
modernizing legacy
code

Cascade handles
complex codebases
suitable for refactoring

Can rewrite entire
codebases; edit
classes/functions via
prompts

Test Generation "Write tests" feature;
/tests & /fixTestFailure
commands

Cascade can fix test
failures proactively

Agent mode can add
tests

Debugging
Assistance

Agent mode can check
for errors; /fix command

Cascade "fixes... 10
steps ahead"; auto lint
fixing

"Debug with AI"
feature; BugBot for
issue detection

Extensibility Copilot Extensions,
custom agents/skillsets
via Copilot Studio

MCP support; Custom
Workflows &
File-Based Rules

Imports VS Code
extensions; MCP
support; Custom
modes (beta);
.cursorrules

Unique Feature 1 Copilot Vision (image
input in chat)

Planning Mode
(collaborative AI task
planning)

BugBot (automated PR
review agent)

Unique Feature 2 Copilot Spaces (team
collaboration)

SWE-1 Models
(proprietary frontier
models)

Max Mode (access to
powerful models,
token-based pricing)

Supported IDEs
(Beyond Native/Fork)

VS Code, Visual
Studio, Vim/Neovim,
JetBrains

JetBrains IDEs
(Cascade); Chrome
extension for 70+ IDEs
(Colab, Jupyter)

Primarily its own VS
Code fork editor

4. Pricing and Plans (as of June 11, 2025)
The pricing structures for GitHub Copilot, Windsurf, and Cursor reflect different approaches to
packaging and selling AI capabilities, ranging from straightforward subscriptions to more
complex usage-based models.

4.1. GitHub Copilot

GitHub Copilot offers a tiered pricing model catering to individuals, businesses, and enterprises.
● Individual Plans:

○ GitHub Copilot Free: Provides limited access to select Copilot features, allowing
users to try the AI coding assistance at no cost. This tier is not suitable for
enterprise use due to the lack of management and security features.

○ GitHub Copilot Pro: Priced at $10 USD per month or $100 USD per year. This
plan includes unlimited code completions in IDEs, access to Copilot Chat, and up to
300 "premium requests" per month. Additional premium requests are priced at
$0.04 USD each. Verified students, teachers, and maintainers of popular
open-source projects may be eligible for free access.

○ GitHub Copilot Pro+: Costs $39 USD per month or $390 USD per year. It
encompasses all features of Copilot Pro, increases the premium request allowance
to 1,500 per month (additional at $0.04 USD each), provides full access to all
available models in Copilot Chat, and offers priority access to advanced AI
capabilities. This plan is targeted at AI power users.

● Business and Enterprise Plans:
○ GitHub Copilot Business: Designed for organizations on GitHub Free or GitHub

Team plans, or enterprises on GitHub Enterprise Cloud. It is priced at $19 USD per
user per month and enables centralized management and policy control.

○ GitHub Copilot Enterprise: For enterprises using GitHub Enterprise Cloud, this
plan includes all Copilot Business features plus the Copilot coding agent and
additional enterprise-grade capabilities. Pricing is customized.

The Copilot coding agent, when active, consumes GitHub Actions minutes from the account's
monthly allowance and premium requests from the Copilot plan's allowance. If these free
allowances are exhausted, and billing is set up, users will be charged for additional usage.

4.2. Windsurf

Windsurf (formerly Codeium) employs a tiered subscription model with a system of "prompt
credits". Pricing was simplified in April 2025, removing "Flow Action Credits".

● Free Plan: Costs $0/month. It includes a 2-week Pro trial, 25 prompt credits per month
(equivalent to 100 GPT-4.1 prompts, with 4 prompts per credit), access to all premium
models (though potentially limited), unlimited "Fast Tab" (autocomplete), unlimited SWE-1
Lite model usage, unlimited "Command" (chat), Previews, and 1 App Deploy per day. An
upgraded free tier with increased limits was rolled out in April 2025.

● Pro Plan: Approximately $15/month. This tier offers everything in the Free plan plus 500
prompt credits per month, access to the SWE-1 model (promotional rate of 0 credits per
prompt), add-on credits at $10/250 credits, 5 App Deploys per day, access to
frontend/backend templates, and code export with Git integration.

● Teams Plan: Approximately $30/user per month. Includes Pro features plus 500 prompt
credits per user/month, add-on credits at $40/1000 credits, "Windsurf Reviews" (AI code
review), centralized billing, admin dashboard, priority support, and full-stack generation
capabilities.

● Enterprise Plan: Approximately $60/user per month. Builds on the Teams plan with 1,000
prompt credits per user/month, Role-Based Access Control (RBAC), SSO, and for
organizations with over 200 users, volume discounts, dedicated support, and options for
hybrid or on-premise deployment.

4.3. Cursor

Cursor utilizes a request-based system for its AI interactions, with a freemium model and paid
tiers offering more requests and features. One standard "request" is priced at $0.04 USD.

● Hobby Plan: Free. Offers a limited number of completions (2000 initially mentioned in
one source , though the primary pricing guide focuses on request counts) and 50
standard requests per month. Premium model access is limited.

● Pro Plan: $20/month. Includes unlimited completions, 500 "fast requests" per month, and
unlimited "slow requests" once fast requests are depleted. Crucially, this plan grants
access to "Max Mode" and unlimited premium models.

● Business Plan: $40/user/month. Provides everything in the Pro plan for each user (500
fast requests per user), plus team-oriented features like centralized billing, admin
dashboards, and options to enforce privacy mode org-wide.

Cursor distinguishes between "Normal Mode" and "Max Mode" for AI interactions.
● Normal Mode: Each message to a model costs a fixed number of requests (e.g., 1

request for a user prompt to Claude 3.5 Sonnet). This mode is ideal for everyday coding
tasks where cost predictability is important. If fast requests are exhausted, users can
utilize "slow requests" which use premium models but are processed at a lower priority.

● Max Mode: Operates on a token-based pricing system, charging the model provider's API
price plus a 20% margin. This mode is for complex reasoning, debugging, and agentic
tasks requiring large contexts (up to 1M tokens for some models) and more tool calls.
Slow requests are not available for Max Mode; users must opt into usage-based pricing if
their fast request quota is depleted.

If quotas for fast requests are exceeded on paid plans, users can either fall back to slower
processing (Normal Mode only) or opt into usage-based pricing for continued fast access or
Max Mode usage.
The pricing philosophies of these tools reveal their target audiences and operational models.
GitHub Copilot and Windsurf lean towards more conventional SaaS subscription tiers, offering
predictability for individuals and businesses. Copilot's integration with GitHub services and
Actions minutes adds a layer of platform-specific value and potential cost. Windsurf's prompt
credit system allows some flexibility within its tiers. Cursor, with its distinct Normal/Max modes
and request-based billing for advanced usage, caters more to power users who need granular
control over model access and are willing to manage a more variable cost structure to leverage
cutting-edge AI capabilities.
All three provide free tiers, but these are clearly positioned as entry points or for very light
usage, rather than as comprehensive solutions for professional development. The true value
and cost-effectiveness for intensive, professional use are found in their paid plans. Furthermore,
the increasing sophistication of "agent" features introduces a nuanced cost dimension. For
instance, GitHub Copilot's coding agent consumes GitHub Actions minutes , and Cursor's
powerful Max Mode, often used for agentic tasks, directly passes on model provider costs plus a
margin. This suggests that the nominal subscription price might not represent the total cost of
ownership if heavy use of advanced, resource-intensive agent features is anticipated.

Table 2: Detailed Pricing Plan Comparison (June 2025)

Feature/Aspect GitHub Copilot Windsurf Cursor
Free Tier Availability Yes, limited features Yes, 2-week Pro trial,

25 prompt
credits/month, limited

Yes (Hobby), limited
completions, 50
requests/month

Feature/Aspect GitHub Copilot Windsurf Cursor
premium models,
SWE-1 Lite

Individual Plan 1
Name

Copilot Pro Pro Pro

Individual Plan 1
Price

$10/month or
$100/year

~$15/month $20/month

Individual Plan 1 Key
Features

Unlimited completions,
Copilot Chat, 300
premium
requests/month

500 prompt
credits/month, SWE-1
model access, 5 App
Deploys/day

Unlimited completions,
500 fast
requests/month,
unlimited slow
requests, Max Mode
access

Individual Plan 2
Name

Copilot Pro+ N/A (Teams/Enterprise
are next tiers)

N/A (Business is next
tier)

Individual Plan 2
Price

$39/month or
$390/year

N/A N/A

Individual Plan 2 Key
Features

All Pro features, 1500
premium
requests/month, full
model access

N/A N/A

Business/Team Plan
Price

Copilot Business:
$19/user/month

Teams:
~$30/user/month

Business:
$40/user/month

Enterprise Plan
Availability

Yes, custom pricing,
includes coding agent

Yes, ~$60/user/month,
1000 prompt
credits/user/month,
RBAC, SSO, on-prem
option

Yes (part of Business
plan features like
SAML/OIDC SSO,
admin dashboard)

Core Pricing Model Subscription, premium
request limits

Subscription, prompt
credit system

Subscription,
request-based
(fast/slow),
token-based for Max
Mode

Cost of Additional
Usage

$0.04/additional
premium request;
Actions minutes for
coding agent

Add-on credits (e.g.,
$10/250 for Pro)

Usage-based pricing
for fast requests/Max
Mode beyond quota
($0.04/std request,
model API + 20% for
Max)

5. User Opinions and Community Feedback
User sentiment and community discussions provide invaluable real-world perspectives on the
strengths, weaknesses, and practical usability of these AI coding assistants.

5.1. GitHub Copilot

Feedback on GitHub Copilot is mixed, particularly concerning its code completion quality and
agent capabilities. Some developers find its inline suggestions less effective compared to
alternatives like Cursor or even the free tier of Windsurf. One user described Copilot's code
completion as "absolutely terrible". The VS Code agent implementation for Copilot has also
been criticized as "very bad" by some, leading them to prefer open-source agents where they
can use their own API keys for unrestricted model access. The "Copilot Edits" feature, intended
for multi-file changes, has reportedly been slow or prone to making incorrect modifications at
times.
On the other hand, Copilot is often described as a simpler tool, well-suited for inline assistance
and fitting well into fast-paced development environments. It is generally considered reliable for
its core suggestion capabilities, backed by a large user base and extensive community support.
However, it is perceived to struggle with large-scale refactoring tasks when compared to Cursor.

5.2. Windsurf

Windsurf has garnered positive mentions for the quality of its code completion, especially in its
free tier. The Windsurf Editor's free tier is also praised for its comprehensive tab autocomplete
support. It is often positioned as an "agile challenger" that offers good contextual understanding
and is cost-effective, making it appealing for indie developers and small teams. Windsurf's
"Planning Mode," introduced in June 2025, was noted as a feature highly requested by the
community to help guide the AI in completing longer, more complex tasks.
However, not all experiences are positive. One user with a premium Windsurf account through
their workplace described the tool as "abysmal" and often hindering rather than helping. In terms
of performance, its code completion speed is sometimes reported to be slower than Cursor's.
Being a newer entrant compared to GitHub-backed Copilot, its ecosystem of plugins and
community resources is still developing. In a direct comparison, one review found Windsurf's
output to be "noticeably cleaner with fewer errors" than Cursor's for a similar task, and praised
its session memory capabilities via the Cascade system.

5.3. Cursor

Cursor generally receives enthusiastic praise for its power and advanced features. Users have
described it as a "2x improvement over Copilot," with "magic" tab completion, and "how Copilot
should feel". Its inline suggestions and editing capabilities are frequently cited as being "miles
better" than those of Copilot. An in-depth review from May 2025 highlighted its snappy AI-driven
completions (Cursor Tab), effective Composer-style inline edits, powerful Agent Mode for
project-wide tasks, and robust context management via .cursorrules and other features.
TrustRadius reviews echo this sentiment, with a high score of 9.5/10. A non-technical founder
found it valuable for web app prototyping, while a technical C-Level executive reported at least a
25% increase in development speed.
Despite the accolades, Cursor is not without its critics. Common complaints revolve around
"breaking updates, hijacked keybindings and their overall business model". Some users feel its
agent capabilities are being "constantly nerfed" , and its heavy-handed approach to keybindings
is a significant point of frustration for some. While powerful, it is also considered pricey and
potentially complex for beginners. The May 2025 review also pointed out frustrations like UI
clutter, inconsistent AI performance at times, potential for agent "overreach" with vague
prompts, and past shortcut conflicts (though many are reportedly fixed).
Feedback on its new "BugBot" feature (June 2025) has been mixed. Some users find it helpful

in identifying issues. Others report that BugBot can miss simple bugs, may fail to run on older
PRs, or lacks clear progress indicators during operation. There are also concerns about the
potential cost of BugBot, as it may use Max Mode pricing after its preview period.
The collective user feedback paints a picture of a rapidly evolving landscape. Cursor often
emerges as the most powerful and feature-rich tool, particularly for users who prioritize
cutting-edge AI capabilities and deep codebase interaction. However, this power comes with a
steeper learning curve and occasional stability or UX challenges, characteristic of a tool pushing
the "bleeding edge". Developers seem willing to trade some stability for the advanced
functionalities Cursor offers.
A recurring theme across all tools is the critical importance of context management. Positive
experiences frequently correlate with the AI's ability to understand the user's intent and the
broader codebase, while negative experiences often stem from context failures or the AI making
incorrect assumptions. This underscores why features like Windsurf's Memories and local
indexing , Cursor's deep codebase awareness and Memories feature , and Copilot's semantic
indexing and context attachment capabilities are so vital. The effectiveness of these tools in
handling large, complex projects often hinges on their ability to manage and utilize context
effectively.
Finally, the availability of free tiers plays a significant role in user adoption and initial
impressions. Windsurf's well-regarded free tier completion is a case in point. However, the true
test of these tools often comes from sustained professional use under paid plans, where
expectations for reliability, performance, and support are considerably higher. The contrast
between positive feedback on a free feature and critical feedback on a premium enterprise
deployment highlights this shift in user perspective and demand.

6. Deep Dive: Agentic Capabilities – The Path to
Autonomous Coding?
The term "agentic AI" has become central to the discourse on next-generation coding
assistants. It signifies a shift from tools that merely suggest or complete code to systems
capable of more autonomous, multi-step problem-solving. These agents aim to understand
higher-level goals, plan sequences of actions, interact with the codebase and development
environment (including using tools like terminals), and even exhibit forms of self-correction to
achieve desired outcomes, thereby reducing the cognitive load on developers for complex
tasks.

6.1. GitHub Copilot's Agent Mode

GitHub Copilot's "Agent mode" allows it to undertake tasks such as searching the workspace for
context, editing files (potentially multiple), checking for errors, running terminal commands (with
user permission), and executing build tasks. The workflow typically involves the user providing a
high-level natural language prompt. Copilot then autonomously plans the necessary steps,
selects relevant files, and iterates on code edits and command executions until the task is
considered complete.
Its strengths lie in its deep integration within the VS Code environment, providing access to the
full workspace context and the ability to directly invoke terminal commands and build processes.
However, its context window, while large and expanding, is finite, which can lead to the agent
"forgetting" earlier parts of a complex task or decisions made previously. Users have also

reported that it can be unpredictable at times, underscoring the need for continuous developer
engagement and careful review of proposed changes. While powerful, it is an evolving
capability.

6.2. Windsurf's Cascade Agent & Planning Mode

Windsurf's "Cascade" agent is positioned as an AI that "codes, fixes and thinks 10 steps ahead"
, leveraging features like "Memories" for context persistence, user-defined "Rules" for behavioral
guidance, and a local index of the entire codebase for comprehensive understanding.
A significant innovation is "Planning Mode," introduced in Wave 10 (June 10, 2025). This mode
addresses the challenge of maintaining coherence in long-running, complex tasks by having
Cascade generate an editable plan.md file. This markdown file outlines the goals and sub-tasks
the AI intends to perform. It serves as a persistent, shared "plan timeline" that both the AI and
the human developer can inspect and modify. The AI pulls from this plan to guide its short-term
actions and updates the plan as new information is learned or actions are completed. This
explicit planning primitive is designed to prevent the breakdown often seen in agentic tools
when tackling substantial tasks.
The strength of this approach is its focus on maintaining developer flow and enabling proactive
problem-solving through a transparent and collaborative planning process. The primary
limitation is its newness; the real-world effectiveness and robustness of Planning Mode across a
wide spectrum of complex development scenarios are yet to be extensively validated by the
broader user community.

6.3. Cursor's Agent Capabilities & BugBot

Cursor offers several agentic functionalities. Its "Background Agent" can handle remote coding
tasks, and there's a specific "Agent for Jupyter Notebooks" designed to work within that
environment.
"BugBot" is a specialized agent that automates aspects of code review. It integrates with GitHub
to review pull requests, identify potential bugs and logical issues, and then provides comments
directly on the PR. A key part of its workflow is the "Fix in Cursor" link, which takes the
developer back to the editor with a pre-filled prompt to address the specific issue BugBot found.
User feedback on BugBot is currently mixed; some find it useful for catching obvious misses,
while others report instances where it failed to detect simple errors or had operational difficulties
(e.g., not running on older PRs, lack of progress indicators). A concern for users is its potential
cost, as it might leverage Cursor's "Max Mode" pricing after its initial preview period.
Cursor's general agent capabilities are also powerful, allowing it to interact deeply with the
codebase and utilize the high-performance models available in "Max Mode" for complex
reasoning and task execution. However, users have noted that if prompts are too vague, the
agent's behavior can be "overreaching," leading to unintended file edits, and the overall
consistency of the AI's performance can vary.

6.4. Comparative Analysis of Agent Maturity and Approach

All three tools are clearly pushing towards greater agent autonomy, but their approaches and
current areas of focus differ. GitHub Copilot is leveraging its strong IDE integration and growing
suite of tools within the Microsoft ecosystem. Windsurf is emphasizing explicit, collaborative
planning and maintaining developer flow as central tenets of its agentic design. Cursor is

offering a combination of general-purpose powerful agents and specialized agents like BugBot,
with a strong emphasis on power-user control and access to a variety of frontier models.
A critical aspect of agent maturity is the ability to "self-correct" or learn from feedback within an
agentic loop. Windsurf's Planning Mode explicitly mentions the plan being updated based on
new information derived from actions taken. Copilot's agent mode also aims to iterate and refine
its work, including detecting and fixing errors. Cursor's "Debug with AI" functionality hints at
similar corrective capabilities.
The introduction of an explicit, persistent, and editable plan, as seen in Windsurf's "Planning
Mode" , signals a potentially important direction for managing complex agentic tasks. This
addresses a common failure point where agents lose coherence or deviate from the overarching
goal during long interactions. By making the plan a shared artifact, it allows for better human-AI
alignment and intervention when needed. While Copilot's agent also internally "plans the steps"
, Windsurf's approach externalizes this plan, making it more transparent and interactive.
Despite these advancements, the human-in-the-loop remains indispensable. Current agentic
AIs are not "fire and forget" solutions. They require careful prompt engineering, ongoing
oversight, and diligent review of their outputs. The most effective paradigm, as suggested by
Copilot's documentation, is a "driver" model where the developer sets the strategic direction and
the AI executes complex sub-tasks under that guidance. User feedback across tools confirms
that vague instructions or a lack of review can lead to undesirable outcomes.
Another emerging pattern is the distinction between general-purpose agents and specialized
agents. Cursor's BugBot exemplifies a specialized agent designed for a narrow, well-defined
task (code review). This contrasts with the more general-purpose agents of Copilot and
Windsurf's Cascade, which aim to handle a broader array of coding requests. The future likely
holds a combination of both: highly capable generalist agents for diverse assistance,
complemented by specialized agents optimized for specific, critical tasks where high accuracy
and domain-specific knowledge are paramount. GitHub's development of Copilot skillsets and
custom agents points in this direction as well.

7. Focus: Jupyter Notebook Integration
Jupyter Notebooks are indispensable tools for data science, research, and interactive
computing, facilitating a workflow where code, visualizations, and narrative text coexist. AI
assistance within this environment can dramatically accelerate tasks such as data exploration,
generating code for complex analyses or visualizations, and documenting findings.

7.1. GitHub Copilot in Jupyter Notebooks

GitHub Copilot benefits from Visual Studio Code's mature and robust native support for Jupyter
Notebooks. Recent enhancements have specifically targeted Python development within this
ecosystem. Copilot supports editing notebooks in both "edit mode" (enabled via
chat.edits2.enabled:true) and "agent mode." These modes allow users to modify content across
multiple cells, insert or delete cells, and change cell types seamlessly. A key feature is the
/newNotebook command (also accessible via the #newJupyterNotebook chat variable), which
enables Copilot to scaffold new Jupyter Notebooks based on user queries or project
requirements. This can significantly speed up the initial setup for new analyses or projects.
Furthermore, Copilot can now incorporate notebook cell outputs (including text, errors, and
images) into the chat context. This is done via a "Add cell output to chat" action, allowing the AI

to better understand the current state of the notebook and provide more relevant assistance.
While Copilot provides these integrated AI features, some users also employ complementary
tools like the Jupyter Mosaic plugin for enhanced cell layout and organization, independently of
Copilot's functionality. Some users accustomed to PyCharm have found the Copilot user
experience within that specific JetBrains IDE to be somewhat lacking compared to VS Code.

7.2. Windsurf in Jupyter Notebooks

Windsurf provides Jupyter Notebook support primarily through its Chrome extension, which is
compatible with a wide range of IDEs and web editors, including Jupyter Notebooks and Colab.
As of April 2025, "Windsurf Tab" (its contextual suggestion feature) also supports Jupyter
Notebooks, offering autocomplete and code suggestions within the notebook interface. To use
the Windsurf plugin directly within JupyterLab, users need to install the codeium-jupyter pip
package and authenticate the extension with their Windsurf account. Once set up, Windsurf can
generate code from code fragments or natural language comments within notebook cells, with
suggestions accepted via the Tab key. A more advanced integration is emerging through "The
Notebook MCP," an open-source Model Context Protocol server. This server enables
MCP-compatible AI agents, including Windsurf's Cascade, to interact with and edit .ipynb files
directly. This allows for more sophisticated agentic operations such as programmatic cell
creation, deletion, modification, execution (while preserving kernel state), and metadata editing.
This represents a significant step towards deeper, more intelligent agent interaction with the
notebook environment itself, rather than just surface-level text generation.

7.3. Cursor in Jupyter Notebooks

Cursor's approach to Jupyter Notebooks has evolved. A common workflow, particularly praised
for its effectiveness with AI, involves using plain .py files structured with Jupyter-style cell
delimiters (# %% for code cells, # %% [markdown] for markdown cells). This format is often
easier for LLMs to parse and manipulate compared to the complex JSON structure of native
.ipynb files. Within these .py files, users can run cells using Ctrl+Enter (or Cmd+Enter), and
Cursor's AI chat (invoked with Ctrl+K or Cmd+K) can be used to explain code, suggest
improvements, or generate markdown documentation based on cell outputs.
As of its 1.0 release (June 4, 2025), Cursor's Agent can now directly implement changes within
native Jupyter Notebooks (.ipynb files), including creating and editing multiple cells. Initially, this
direct .ipynb manipulation is supported with Sonnet models. Visualizations can present a minor
hurdle in the plain .py workflow; charts generated by libraries like Matplotlib or Seaborn typically
pop up in a separate window. A workaround adopted by users is to take screenshots of these
charts and paste them into Cursor's chat, allowing the AI to "see" the visualizations and
incorporate them into its analysis or markdown generation. Similar to Windsurf, Cursor can also
leverage "The Notebook MCP" server. This allows Cursor's Composer (its agentic interface) to
interact with .ipynb files using the MCP toolset, providing another avenue for deep,
programmatic notebook manipulation.
The different approaches to Jupyter Notebook integration reflect the underlying philosophies
and architectures of these AI assistants. Copilot builds upon VS Code's strong native
capabilities. Cursor initially prioritized AI-friendly plain text formats but is now embracing direct
.ipynb interaction and MCP-based tooling. Windsurf uses a combination of a versatile browser
extension for broad compatibility and is also adopting MCP for deeper agentic control. This
variety indicates that there isn't a single "best" method yet, and the optimal choice often

depends on user preferences regarding native experience versus AI-optimized workflows, and
the desired level of agentic intervention.
A key challenge highlighted by Cursor users' preference for .py files is the "impedance
mismatch" between LLMs, which are generally optimized for linear text, and the complex,
structured JSON format of .ipynb files. Tools like The Notebook MCP are crucial in bridging this
gap by providing a structured API that abstracts away the raw notebook format, allowing AI
agents to interact with notebooks more naturally.
The next frontier in AI-assisted notebook environments appears to be enabling agents to
interact directly and intelligently with the notebook's execution state (kernel). The Notebook
MCP's feature that preserves kernel state between AI-driven cell executions is a significant step.
This allows an AI agent to not just generate or edit code, but to actively participate in the
iterative cycle of data analysis: defining variables, running computations, observing results, and
then making informed decisions for subsequent steps based on the live state of the notebook.
This capability is profoundly transformative for data science and research workflows, moving the
AI from a passive code generator to an active participant in the discovery process.

Table 3: Jupyter Notebook Integration Capabilities (June 2025)

Capability GitHub Copilot Windsurf Cursor
Native .ipynb Editing
Support

Yes, via VS Code
integration

Limited direct editing;
primarily via
plugin/extension
suggestions. Deeper
editing via The
Notebook MCP

Yes, Agent can
create/edit cells in
.ipynb files (Sonnet
models initially). Also
supports .py script
cells. Deeper editing
via The Notebook MCP

Agent-driven Cell
Creation/Editing in
.ipynb

Yes, via Agent Mode Yes, via The Notebook
MCP with Cascade
agent

Yes, native Agent
support for .ipynb cell
manipulation; also via
The Notebook MCP
with Composer

AI Actions on .py
Script Cells

Yes, within VS Code's
Python environment

Yes, general code
assistance applies

Yes, primary historical
method, well-supported

Notebook Scaffolding
from Prompt

Yes, /newNotebook
command or
#newJupyterNotebook
variable

Not explicitly
documented as a direct
command, but agent
could potentially
scaffold via MCP.

Agent could potentially
scaffold via MCP or by
generating content for
.py script cells.

Contextual
Awareness of Cell
Outputs

Yes, can add cell
outputs (text, errors,
images) to chat

Possible via MCP if
agent reads cell
outputs.

For .py scripts, AI can
read terminal output.
For .ipynb, possible via
MCP or by pasting
screenshots of chart
outputs into chat.

Data Visualization
Assistance

Can generate plotting
code; can analyze
screenshots of plots via

Can generate plotting
code.

Can generate plotting
code; can analyze
screenshots of plots

Capability GitHub Copilot Windsurf Cursor
Vision (Preview) pasted into chat.

Ease of Setup for
Notebooks

Seamless if using VS
Code (native support)

Requires browser
extension or pip install
codeium-jupyter + auth
for JupyterLab plugin;
MCP server setup is
separate

Seamless for .py files;
direct .ipynb agent use
is new; MCP server
setup is separate

Direct Agent
Interaction with
Kernel State (via
MCP)

N/A (MCP not a
primary GitHub Copilot
integration path for this)

Yes, The Notebook
MCP allows
notebook_execute_cell
preserving kernel state

Yes, The Notebook
MCP allows
notebook_execute_cell
preserving kernel state

8. The Gemini Perspective: Which Tool Would a
Humanoid Gemini Prefer?
Speculating on the preferences of a hypothetical human embodiment of Google's Gemini 2.5 AI
model requires considering Gemini's core architectural strengths and capabilities as of
mid-2025.

8.1. Recap of Gemini 2.5's Key Capabilities

As of March-May 2025, Gemini 2.5 (particularly Gemini 2.5 Pro) is characterized by:
● "Thinking Model" Architecture: Gemini 2.5 models are designed to reason through

steps before responding, leading to enhanced performance, accuracy, and the ability to
analyze information, draw logical conclusions, and incorporate context and nuance.

● Advanced Coding Performance: It excels at creating visually compelling web
applications, agentic code applications, and performing code transformation and editing.
Gemini 2.5 Pro scored 63.8% on the SWE-Bench Verified benchmark with a custom
agent setup.

● Native Multimodality and Long Context Window: Gemini models inherently support
multimodal inputs (text, audio, images, video) and possess a long context window (1
million tokens for 2.5 Pro, with 2 million planned). This allows comprehension of vast
datasets and complex problems from diverse information sources, including entire code
repositories.

8.2. Criteria for Gemini's Preference

A human-like Gemini, embodying these capabilities, would likely prioritize a coding assistant
that offers:

1. Access to its own (or equivalent) most powerful underlying models: To leverage its
full cognitive potential.

2. Deep Codebase Understanding and Extremely Large Context Handling: Essential for
its advanced reasoning and ability to work with extensive codebases.

3. Sophisticated and Reliable Agentic Capabilities: To enact its complex, reasoned-out
plans and multi-step execution strategies.

4. Extensibility and Robust Tool Use (e.g., via MCP): To interact with diverse data types

and external systems, aligning with its native multimodal nature and data processing
strengths.

5. Rich Interaction Modalities: Support for inputs beyond just text, such as visual
information for UI generation or problem description.

6. Strong Support for Complex Problem Solving and Research-Oriented Workflows:
Including seamless and intelligent Jupyter Notebook integration.

8.3. Speculative Analysis of Tool Alignment

● GitHub Copilot:
○ Pros: Its evolving Agent Mode and the introduction of Copilot Vision for image input

are steps in the right direction. The Copilot Studio and Extensions framework offer
significant extensibility. If integrated with future powerful models from
Microsoft/OpenAI that match Gemini's caliber, it would be a strong contender.

○ Cons: As of mid-2025, its agent mode is still maturing relative to some specialized
aspects of competitors. The choice of underlying models might be less flexible than
what a Gemini persona would prefer if it's primarily tied to OpenAI's models (unless
those are consistently superior or Gemini itself).

● Windsurf:
○ Pros: The Cascade agent, particularly with the new "Planning Mode," aligns well

with Gemini's "thinking model" approach by externalizing and collaborating on
plans. Windsurf offers access to its own SWE-1 models and, significantly, had beta
access to Gemini 2.5 Pro as of March 2025. Its strong context awareness engine
and MCP support are also attractive. Image upload for UI generation is a nod to
multimodality.

○ Cons: The ultimate performance of its proprietary SWE-1 models compared to
Gemini 2.5 Ultra or a future Gemini 3 would be a key factor. Its ecosystem, while
growing, might be perceived as less broad than GitHub Copilot's.

● Cursor:
○ Pros: Cursor stands out for its explicit offering of a wide range of frontier models,

including Gemini 2.5 Flash and potentially Pro variants, accessible via its "Max
Mode". This "model freedom" would be highly appealing. Its agentic features are
designed for deep codebase interaction and complex tasks, and specialized agents
like BugBot show a commitment to advanced automation. Robust MCP support and
rich chat/context management are also significant advantages.

○ Cons: The request-based pricing for its most powerful "Max Mode" could become a
concern if Gemini's advanced operations are resource-intensive, potentially leading
to high costs. The reported UX complexities and occasional instability might also be
frustrating.

8.4. Conclusion on Gemini's Likely Preference

A human version of Gemini would likely gravitate towards the tool offering the most
unconstrained access to its own latest models (or their direct equivalents), the largest
and most effectively utilized context window, the most sophisticated and reliable agentic
framework for executing complex, reasoned-out tasks, and robust support for tool use
(e.g., MCP) to leverage its multimodal and diverse data processing capabilities.
As of June 11, 2025, Cursor appears to have a notable advantage for such a persona. Its

explicit provision of various frontier models, including Google's own Gemini 2.5 series
(accessible via "Max Mode"), combined with its powerful agentic features tailored for deep
codebase interaction, would allow a Gemini persona to operate with an engine it understands
intimately and at a high level of capability.
Windsurf is a very strong contender, particularly due to its innovative "Planning Mode" which
resonates with Gemini's "thinking model" paradigm, and its early adoption of Gemini 2.5 Pro in
beta. If its SWE-1 models prove competitive or if it continues to offer seamless access to top-tier
Gemini models, its appeal would be substantial.
GitHub Copilot, with its strong ecosystem, evolving agent mode, and emerging vision
capabilities , remains highly relevant. Its future attractiveness to a Gemini persona would heavily
depend on the power and accessibility of the models it integrates through its Microsoft and
OpenAI partnerships.
Ultimately, the choice would be nuanced. For pure, unadulterated coding and reasoning with
access to the latest Gemini LLMs, Cursor's "Max Mode" presents a compelling proposition. For
tasks requiring meticulous, collaborative, long-range planning and execution, Windsurf's
"Planning Mode" offers a unique and potentially decisive advantage. For broad ecosystem
integration and tasks leveraging a vast array of existing developer tools and services, Copilot's
extensive reach and platform integrations would be appealing.
This thought experiment underscores a critical trend: the power of an AI coding assistant is
increasingly defined not just by its features, but by the underlying intelligence (the LLM) it
provides access to and the sophistication of the agentic framework that allows that intelligence
to be applied effectively to complex, real-world coding challenges. The "thinking model" aspect
of Gemini 2.5, which emphasizes reasoning through steps before responding , aligns perfectly
with the development of more advanced agentic behaviors in these tools, especially those
involving explicit planning, iterative refinement, and self-correction. Furthermore, as Gemini
models are natively multimodal , a human Gemini would eventually demand a coding assistant
that fully embraces multimodal inputs (images, diagrams, audio specifications) as first-class
citizens in the development workflow, a domain where tools like Copilot Vision are just beginning
to explore.

9. Conclusion and Future Outlook
The AI coding assistant landscape in mid-2025 is characterized by rapid innovation and intense
competition. GitHub Copilot, Windsurf, and Cursor each present compelling, albeit distinct,
value propositions for developers.
GitHub Copilot stands out for its broad IDE support, deep integration within the GitHub
ecosystem, and a growing suite of features including agentic capabilities and multimodal input
via Copilot Vision. Its tiered pricing and enterprise management features make it a strong
candidate for organizational adoption.
Windsurf has carved a niche with its focus on developer flow, a powerful Cascade agent
featuring the innovative Planning Mode, and its own SWE-1 frontier models. Its flexible Jupyter
Notebook integration via extensions and MCP, along with competitive pricing, makes it an
attractive option for both individuals and teams.
Cursor positions itself as the AI-first editor for power users, offering unparalleled access to a
variety of frontier models (including Gemini 2.5) through its Max Mode, sophisticated agentic
features like BugBot, and deep codebase understanding. While potentially having a steeper
learning curve and a more complex pricing model for its most advanced capabilities, its raw

power is often lauded by users.
The analysis reveals that agentic capabilities are the current frontier. All three tools are heavily
investing in enabling AI to perform more complex, multi-step tasks with greater autonomy.
However, the human-in-the-loop remains crucial for strategic direction, prompt engineering, and
review. The "co-pilot" paradigm, augmenting human developers rather than fully automating
them, seems the most probable trajectory for the foreseeable future.
Jupyter Notebook integration is also a key battleground, particularly for data science and
research communities. Approaches vary from native IDE support (Copilot in VS Code) to flexible
plugin/extension models and increasingly sophisticated MCP-based interactions that allow
agents to manipulate notebooks at a granular level and even interact with kernel state (Windsurf
and Cursor via The Notebook MCP).
Looking ahead, the evolution of AI coding assistants will likely see:

● Continued advancements in LLM capabilities: Leading to more accurate,
context-aware, and powerful agents.

● Deeper workflow integration: Blurring the lines between the IDE, the AI assistant,
version control, and collaborative platforms.

● Increased personalization and customization: Allowing developers and teams to tailor
AI behavior to their specific languages, frameworks, coding standards, and project needs
through custom instructions, rules, and even bespoke agents.

● Greater emphasis on multimodal interactions: Moving beyond text and code to
incorporate visual, auditory, and other forms of input and output.

● Heightened focus on responsible AI: As agents gain more autonomy, ensuring security,
privacy, fairness, and accountability in AI-generated code and actions will become
paramount. GitHub Copilot's certification already includes "Responsible AI" and "Privacy
fundamentals" , and tools like Cursor emphasize privacy modes and SOC 2 compliance ,
indicating this growing importance.

For users and organizations, the choice of an AI coding assistant in 2025 depends heavily on
specific priorities:

● For large enterprises seeking broad adoption and ecosystem integration: GitHub
Copilot offers a mature platform with robust management features.

● For individual power users, researchers, or those needing access to specific
frontier models: Cursor provides maximum flexibility and raw AI power, albeit with
potential UX friction and variable costs.

● For developers and teams prioritizing a balance of innovative agentic features (like
explicit planning), strong context awareness, and a clean user experience: Windsurf
presents a compelling and rapidly evolving alternative.

Given the dynamic nature of this field and the subjective aspects of user experience, developers
are strongly encouraged to leverage the free tiers and trial periods offered by these tools.
Hands-on experimentation remains the most effective way to determine which AI coding
assistant best aligns with individual workflows, project requirements, and technical preferences.
The journey towards truly intelligent, collaborative coding is well underway, and these tools are
at the vanguard of that transformation.

Works cited

1. About individual Copilot plans and benefits - GitHub Docs,
https://docs.github.com/en/copilot/managing-copilot/managing-copilot-as-an-individual-subscrib
er/getting-started-with-copilot-on-your-personal-account/about-individual-copilot-plans-and-bene

fits 2. Plans for GitHub Copilot - GitHub Docs,
https://docs.github.com/en/copilot/about-github-copilot/plans-for-github-copilot 3. GitHub Copilot
in VS Code cheat sheet - Visual Studio Code,
https://code.visualstudio.com/docs/copilot/reference/copilot-vscode-features 4. February 2025
(version 1.98) - Visual Studio Code, https://code.visualstudio.com/updates/v1_98 5. Copilot ask,
edit, and agent modes: What they do and when to use ...,
https://github.blog/ai-and-ml/github-copilot/copilot-ask-edit-and-agent-modes-what-they-do-and-
when-to-use-them/ 6. Windsurf (formerly Codeium) - The most powerful AI Code Editor,
https://windsurf.com/ 7. Cursor vs Windsurf vs GitHub Copilot - Builder.io,
https://www.builder.io/blog/cursor-vs-windsurf-vs-github-copilot 8. Windsurf Editor Changelogs |
Windsurf (formerly Codeium), https://windsurf.com/changelog 9. Windsurf AI Agentic Code
Editor: Features, Setup, and Use Cases ...,
https://www.datacamp.com/tutorial/windsurf-ai-agentic-code-editor 10. Cursor - The AI Code
Editor, https://www.cursor.com/ 11. Changelog - Jun 4, 2025 | Cursor - The AI Code Editor |
Cursor - The ..., https://www.cursor.com/changelog/1-0 12. Changelog - Mar 23, 2025 | Cursor -
The AI Code Editor,
https://www.cursor.com/changelog/chat-tabs-custom-modes-sound-notification 13. Agent mode
101: All about GitHub Copilot's powerful mode - The GitHub Blog,
https://github.blog/ai-and-ml/github-copilot/agent-mode-101-all-about-github-copilots-powerful-m
ode/ 14. Wave 10: Planning Mode - Windsurf,
https://windsurf.com/blog/windsurf-wave-10-planning-mode 15. Cursor AI: An In-Depth Review
(May 2025 Update) | Engine,
https://www.enginelabs.ai/blog/cursor-ai-an-in-depth-review-may-2025-update 16. Windsurf
(formally Codeium) Recognized on the 2025 Forbes AI 50 List for Advancing AI-Powered
Software Development | WebWire, https://www.webwire.com/ViewPressRel.asp?aId=336841
17. Windsurf Editor Changelogs - Codeium, https://codeium.com/changelog 18. Changelog -
Apr 15, 2025 | Cursor - The AI Code Editor, https://www.cursor.com/changelog/0-49 19. Which
is the Best AI IDE? Windsurf vs Cursor vs Cline vs GitHub ...,
https://apidog.com/blog/windsurf-cursor-cline-github-copilot/ 20. What's new in Copilot Studio:
May 2025 - Microsoft,
https://www.microsoft.com/en-us/microsoft-copilot/blog/copilot-studio/whats-new-in-copilot-studi
o-may-2025/ 21. A Complete Guide to Cursor's New Pricing: Subscriptions and ...,
https://apidog.com/blog/cursor-pricing-guide/ 22. Windsurf Plugin: AI Code Autocompletion on
all IDEs - Chrome Web Store,
https://chromewebstore.google.com/detail/windsurf-plugin-ai-code-a/hobjkcpmjhlegmobgonaage
pfckjkceh 23. About billing for GitHub Copilot - GitHub Docs,
https://docs.github.com/en/billing/managing-billing-for-your-products/managing-billing-for-github-
copilot/about-billing-for-github-copilot 24. Windsurf Pricing Explained: Plans, Use Cases &
Comparisons | UI ..., https://uibakery.io/blog/windsurf-pricing 25. Windsurf AI: is it worth the
hype? | UI Bakery Blog, https://uibakery.io/blog/what-is-windsurf-ai 26. What is Cursor AI?
Everything You Need to Know About the AI-Powered Code Editor,
https://uibakery.io/blog/what-is-cursor-a 27. Cursor vs VSCode Copilot (May 2025 edition) :
r/vscode - Reddit,
https://www.reddit.com/r/vscode/comments/1kd58ct/cursor_vs_vscode_copilot_may_2025_editi
on/ 28. Cursor vs Windsurf vs Copilot | Best AI Code Editor for Developers,
https://www.codeant.ai/blogs/best-ai-code-editor-cursor-vs-windsurf-vs-copilot 29. Cursor
Reviews & Ratings 2025 - TrustRadius, https://www.trustradius.com/products/cursor/reviews 30.
Anyone tried Cursor's new BugBot yet? - Reddit,

https://www.reddit.com/r/cursor/comments/1l39jlt/anyone_tried_cursors_new_bugbot_yet/ 31.
Bugbot feedback - Feedback - Cursor - Community Forum,
https://forum.cursor.com/t/bugbot-feedback/102080 32. What's your 2025 data science coding
stack + AI tools workflow? : r/datascience - Reddit,
https://www.reddit.com/r/datascience/comments/1k26kp3/whats_your_2025_data_science_codi
ng_stack_ai/ 33. Compare JupyterLab vs. Windsurf Editor in 2025 - Slashdot,
https://slashdot.org/software/comparison/JupyterLab-vs-The-Windsurf-Editor/ 34. How to Use
Cursor Jupyter Notebook - Apidog, https://apidog.com/blog/cursor-jupyter-notebook/ 35. Python
in Visual Studio Code - April 2025 Release - Microsoft for ...,
https://devblogs.microsoft.com/python/python-in-visual-studio-code-april-2025-release/ 36.
Jupyter Notebook Tutorial | Windsurf (formerly Codeium), https://windsurf.com/jupyter_tutorial
37. svallory/the-notebook-mcp: Interact and edit Jupyter ... - GitHub,
https://github.com/svallory/the-notebook-mcp 38. Cursor IDE for Jupyter Notebooks: Data
Science and Analysis Tasks - Reddit,
https://www.reddit.com/r/cursor/comments/1jdatdg/cursor_ide_for_jupyter_notebooks_data_scie
nce_and/ 39. Gemini 2.5: Our newest Gemini model with thinking - Google Blog,
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
40. Gemini (language model) - Wikipedia,
https://en.wikipedia.org/wiki/Gemini_(language_model) 41. GitHub Copilot - GitHub
Certifications, https://examregistration.github.com/certification/COPILOT

	AI-Powered Coding Assistants in 2025: A Comparative Analysis of GitHub Copilot, Windsurf, and Cursor
	1. Introduction
	2. Methodology
	3. Overall Feature Comparison (as of June 11, 2025)
	3.1. Core Coding Assistance (Autocomplete, Inline Suggestions, Chat)
	3.2. Agentic Capabilities (Multi-file edits, Task Automation, Debugging)
	3.3. Codebase Understanding & Context Management
	3.4. Refactoring & Code Modernization
	3.5. Testing Assistance
	3.6. Extensibility & Customization
	3.7. Unique/Standout Features
	3.8. IDE Support (Beyond Native Environments)
	Table 1: Overall Feature Comparison Matrix (June 2025)

	4. Pricing and Plans (as of June 11, 2025)
	4.1. GitHub Copilot
	4.2. Windsurf
	4.3. Cursor
	Table 2: Detailed Pricing Plan Comparison (June 2025)

	5. User Opinions and Community Feedback
	5.1. GitHub Copilot
	5.2. Windsurf
	5.3. Cursor

	6. Deep Dive: Agentic Capabilities – The Path to Autonomous Coding?
	6.1. GitHub Copilot's Agent Mode
	6.2. Windsurf's Cascade Agent & Planning Mode
	6.3. Cursor's Agent Capabilities & BugBot
	6.4. Comparative Analysis of Agent Maturity and Approach

	7. Focus: Jupyter Notebook Integration
	7.1. GitHub Copilot in Jupyter Notebooks
	7.2. Windsurf in Jupyter Notebooks
	7.3. Cursor in Jupyter Notebooks
	Table 3: Jupyter Notebook Integration Capabilities (June 2025)

	8. The Gemini Perspective: Which Tool Would a Humanoid Gemini Prefer?
	8.1. Recap of Gemini 2.5's Key Capabilities
	8.2. Criteria for Gemini's Preference
	8.3. Speculative Analysis of Tool Alignment
	8.4. Conclusion on Gemini's Likely Preference

	9. Conclusion and Future Outlook
	Works cited

